New Teaching plan

MSc Courses

<table>
<thead>
<tr>
<th>Kernel Courses Study Plans</th>
<th>VIII (Summer)</th>
<th>IX (Winter)</th>
<th>Optional courses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design of power electronics converters (etit-504)</td>
<td>Modelling and Control of power electronics converters (etit-505)</td>
<td>Microprocessor Non-linear control systems Optimization and optimal control</td>
</tr>
<tr>
<td>Renewables & Smart Grid</td>
<td>Renewable Energy Systems (etit-609)</td>
<td>Grid Converters for Renewables (etit-615)</td>
<td>A course on EMC Non-linear control systems Optimization and optimal control</td>
</tr>
<tr>
<td>Electric Drives</td>
<td>Microprocessor (etit-610)</td>
<td>Electric Drives (etit-607)</td>
<td>Seminars</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PE Laboratory</td>
</tr>
</tbody>
</table>
New Teaching plan

Design of power electronics converters (etit-504)

Semiconductors and Drivers, Topologies of PWM power converters and PWM modulation -> optimum hardware design
New Teaching plan

Design of power electronics converters (etit-504)

- Design of a Power Electronics Converter (Semiconductors and Drivers, Soft and hard switching, passive components, Busbar design, EMC problems and remedies, Thermal model)
- Topologies of PWM power converters (dc/dc, dc/ac, ac/ac): single-cell and multi-cell converters, matrix converters etc
- PWM modulation (single-phase, three-phase, space-vector, multilevel, interleaving, continuous/discontinuous, optimized)
New Teaching plan

Modelling and Control of power electronics converters (etit-505)

Average model, small-signal linearization, transfer functions, current/voltage/power controllers -> optimum software design
New Teaching plan

Modelling and Control of power electronics converters (etit-505)

- dc/dc converter model
- Average model, small-signal linearization, transfer functions
- Design of the controller for dc/dc converters
- dc/ac converter model: ac dynamics and dc dynamics
- Current control (PI, resonant controller, deadbeat)
- dc voltage control (linear, non-linear)
- ac voltage control
- active and reactive power controls
New Teaching plan

Renewable Energy systems (etit-609)

System level analysis of renewable energy systems: problems, connectivity, future trends

- Power Electronics
 - Rating: 50 kW, D 15 m
 - Role: Soft starter
 - 100 kW, D 40 m
 - 500 kW, D 50 m
 - 600 kW, D 80 m
 - 2 MW, D 124 m
 - 5 MW, D 164 m
 - 7~7.5 MW, D 164 m

- Full generator power control
 - ≈ 0%
 - 10%
 - 30%
 - 100%
New Teaching plan

Renewable Energy systems (etit-609)

- Basic principles of Wind and Photovoltaic
- MPPT for Wind and Photovoltaic
- PV-system and PV-park: design procedure
- WT-system and WT-park: design procedure
- Grid connection requirements
- Fault Ride Through
- Islanding
- Ancillary services
- Storage and hybrid systems
- Microgrids
- HVDC
New Teaching plan

Grid converters for renewables (etit-615)

The grid-converter is the interface of all the renewable energy systems to the electric grid: topologies and control
New Teaching plan

Grid converters for renewables (etit-615)

- PV converter topologies
- WT converter topologies
- Overview of PWM modulation
- Overview of Current Control techniques
- Single-phase synchronization with the electrical grid
- Three-phase synchronization with the electrical grid
- Harmonic rejection
- Grid-filter design and resonance issues
- Parallel connection of power electronics converters
New Teaching plan

Electric Drives (etit-607)

Space vector and dynamic representation of ac machines: control structures and examples

\[i_{sq}^* = \frac{T_e^*}{K_e} \]

\[\frac{\omega_R \cdot \Psi_{PM}}{\sqrt{2}} \]

\[X_s \cdot i_{sq}^* \]

\[R_i \cdot i_{sq}^* \]

\[* \]

\[\Psi \]

\[N \]

\[S \]

\[\omega \]

\[\mathbf{v} \]

\[\mathbf{X} \]

\[\mathbf{T} \]

\[\mathbf{K} \]

\[2 \]

\[r \]

\[PM \]

\[\mathbf{\omega} \]

\[\mathbf{\Phi} \]

\[\mathbf{N} \]

\[\mathbf{S} \]
New Teaching plan

Electric Drives (etit-607)

- Space vector representation of electrical machines
- Dynamic model of the synchronous machine
- Dynamic model of the asynchronous machine
- Overview of PWM modulation
- Overview of Current Control techniques
- Vector control of the permanent magnet synchronous machine: Current control loop and Speed control loop
- Vector control of the asynchronous machine: Flux observer
- Sensor-less operation
- Design example in industrial drives and in wind energy
New Teaching plan

Microprocessor Technology for Real-Time Controlling Tasks (etit-610)

Dr.-Ing. Torsten Leifert
SMA Solar Technology AG

The students learn about the functionality, the components and programming of microcontrollers. They will be able to design simple control circuits for applications in control theory or electrical drives. They will be able to design the controller, implement it and test it.